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Efficient inference procedure with objective criteria,
which infers couplings in neuronal networks from spike data.

- We use the kinetic Ising model (generalized linear model) to
efficiently infer synaptic connectivity in the nervous systems.

- We apply our previous method to make original spike trains
coarse-grained with objective criteria.

- We propose a novel method to screen relevant couplings
objectively based on computational-statistic 1dea.

- We demonstrate perfoermance of proposed inference procedure
using synthetic systems of the Hodgkin-Huxley models and real
systems of cultured cortical neurons of rats.

- Our tests 1nclude both systems without and with external stimuli,
all of which imply the applicability of our methods.

Kintetic Ising Model \

Network of binary neurons s (/)==1 with couplings J,

Dynamics

P (s(t+1)[s(t);{Ji5,0:(t)}) = H

1=1
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Maximum Likelihood with Mean-Field Approximation

Mean-field inverse formula

(
Aij(t) = (1 — pi (t)
Ci;(t) = (si(t)s;(t)) —
D;;(t) = (s;(t + 1)s;(t)) —

[1] Y. Roud:1 & J. Hertz, Physical Review Letters 106, 048702 (2011);
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M. Mezard & J. Sakellariou, Journal of Statistical Mechcanics (2011) LO7001. )

Coarse-graining of Signals \

We set a null hypothesis:

every neruon fires independently of other neruon states.
Then, we choose the time bin size such that

we can reject the hypothesis with the strictest criteria.
This 1dea induces the formula [2]
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(2 )
where [ 1s the gross mutual inoformation of the whole trains:

Tozﬁ(ia L+ 1;j7 t)
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ATypt = arg max
AT

rop(i,t +1;4,t) log

[2] Y. Terada, T. Obuchi, T. Isomura, & Y. Kabashima, arXiv: 1803.04738 (2018).
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Screening of Relevant Couplings

We consider randomizing the original trains, and then the couplings
for the randomized trains obey

1
_ -1y D (O, -1y D (A7) —
= 2D~ (ATDaDy (A = T 3
By the central limit theorem, this means the probabiliry for obtaining

a larger coupling than ®_ 1s

Iran

. 1— u2)(1 — p2) (M —1
P(\J{J@“\Z@th)zl—erf q)th\/( &l 2'%)( )>7

where M 1s # of the windows and erf(.) 1s the error function.
As a result, for the level of significance p_, we can use the value

)
(1= )L = p5)(M = 1)

as a criteron of the relevant value.

(Pn)ij = erf " (1 — pyp)
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both of the synthetic and real systems. Our fast improvement
makes it possible to process huge data with reasonable

computational cost.

Conclusion & Open code \

The sign patterns of the connectivity are reconstructed well in




